GMM for panel count data models
نویسنده
چکیده
This chapter gives an account of the recent literature on estimating models for panel count data. Specifically, the treatment of unobserved individual heterogeneity that is correlated with the explanatory variables and the presence of explanatory variables that are not strictly exogenous are central. Moment conditions are discussed for these type of problems that enable estimation of the parameters by GMM. As standard Wald tests based on efficient two-step GMM estimation results are known to have poor finite sample behaviour, alternative test procedures that have recently been proposed in the literature are evaluated by means of a Monte Carlo study. JEL Classification: C12, C13, C23
منابع مشابه
Efficient Estimation of Dynamic Panel Data Models: Alternative Assumptions and Simplified Estimation
This paper considers the estimation of dynamic models for panel data. It shows how to count and express the moment conditions implied by a variety of covariance restrictions. These conditions can be imposed in a GMM framework. Many of the moment conditions are nonlinear in the parameters. We derive a simple linearized estimator that is asymptotically as efficient as the nonlinear GMM estimator,...
متن کاملExpend, a Gauss programme for non-linear GMM estimation of EXPonential models with ENDogenous regressors for cross section and panel data models
ExpEnd is a Gauss programme for non-linear generalised method of moments (GMM) estimation of exponential models with endogenous regressors for cross section and panel data. The estimators included in this package are simple Poisson pseudo ML; GMM for cross section data using moment conditions based on multiplicative or additive errors; within groups fixed effects Poisson for panel data; GMM est...
متن کاملMonte-Carlo comparison of alternative estimators for dynamic panel data models
This paper compares the performance of three recently proposed estimators for dynamic panel data models (LSDV bias-corrected, MLE and MDE) along with GMM. Using Monte-Carlo, we find that MLE and biascorrected estimators have the smallest bias and are good alternatives for the GMM. System-GMM outperforms the rest in ‘difficult’ designs. Unfortunately, bias-corrected estimator is not reliable in ...
متن کاملAlternative GMM estimators for first-order autoregressive panel model: An improving efficiency approach
This paper considers first-order autoregressive panel model which is a simple model for dynamic panel data (DPD) models. The generalized method of moments (GMM) gives efficient estimators for these models. This efficiency is affected by the choice of the weighting matrix which has been used in GMM estimation. The non-optimal weighting matrices have been used in the conventional GMM estimators. ...
متن کاملSmall Sample Bias Properties of the System GMM Estimator in Dynamic Panel Data Models
By deriving the finite sample biases, this paper shows analytically why the system GMM estimator in dynamic panel data models is less biased than the first differencing or the level estimators even though the former uses more instruments.
متن کامل